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Thiz hook gives a comprehensive treatment of the fundamental necessary and saifi
cient oonditions for optimality for finite-dimensional, determinidsc, oplimal comtral
problems. The emphasis is on the geometric sspects of the theory and on illstirating
how these methods @n be used 1o sobe optimal conirel prebleme. 1t provides tooks
and techniques that go well beyond standard procedures and @n be used 1o obtain 2
full understansding of the picbal structure of soletions for the underhying problem. The
text includes a karge member and variety of fully worked oot examples that range from
the daedcal problem of mintmum sirfaces of revoletion be @ncer treatment for novel
therapy approaches. All these examples, in one way or the otber, iledrale the power
of geometric technigues and methods. The verstile tzai contatns maderial on ditfferent
lewels anging from the intreduciony and elementary io the adwnced. Farts of the ext
can be viewed ax 2 comprehensive texibook for both advanced undergraduate and 21l
Il graduaie courses on opttmal control inboth mathematics and engineering depart
memnis. The iext moves smoothy from the moce introductony topios 1o tose parts that
are in 2 monograph style were advanced lopics are presented . Widle the presentation
is mathematically rigorous, 1L is crried oul in a teiorial style that makes the texl ac
cezdble 102 wide audience of researchers and studenis from varioes ficlds, induding
the: mathematical sdences and engineering.
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Geometric Optimal Control — Theory, Methods, Examples

 Heinz Schattler and Urszula Ledzewicz,

Springer Verlag, July 2012

» Urszula Ledzewicz and Heinz Schattler,
Geometric Optinal Control Applied to Biomedical Models
Springer Verlag, 2014

* Mathematical Methods and Models in Biomedicine

Urszula Ledzewicz, Heinz Schattler, Avner Friedman and Eugene
Kashdan, Eds.

Springer Verlag, October 2012



Urszula Lesteewiiz - Heinz Schatter - Avmer Friedman - Eagene Kshdan  Bdiors
Mathematical Methods and Models in Biomedidne

Mathernatical biomedicine is a rapidly devel oping interdisciplinary field of research
that connects the natural and exact scences in an attempt to regpond to the modeling
and simulation challenges raised by biology and medicine.

There exist alarge number of mathematical methods and procedures that can be
brought in to meet these challenges and this book presents a palette of such tools
ranging from discrete cellular automata to cell population based models described by
ordinary differential equations to nonlinear partial differential equations represeant-
ing cormplex tirne- and space-dependent continuous processes. Both stochastic and
deterministic methods are employed to enalyze biclogical phenomena in varions
ternporal and gpatial settings.

This book illustrates the breadth and depth of research opportunities that exist in the
general field of mathematical biomedicing by highlighting some of the fascinating
interactions that continue to develop between the mathematical and biomedical
sciences. It consists of five parts that can be read independently, but are arranged to
give the reader a broader picture of specific reseanch topics and the mathematical
tools that are being applied in its modeling and analysis. The main areas coversd
include immune system modeling, blood vessel dynamics, cancer modeling and
treatrment, and epidemiclogy. The chapters address topics that are at the fore fromt
of current biomedical research auch as cancer stem cells, imrunodominance and
viral epitopes, aggressive forms of brain cancer, or gene therapy. The presentations
highlight how mathematical modelingcan enhance biomedical understanding and
will bt of interest to both the mathernatical and the biomedical communities inclod-
ing researchers already working in the field as well as those who might consider
entering it. Much of the material is presented in & way that gives graduate students
and young researchers a starting point for their own work.
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Optimal Control Problems

min or max

objective

1

control

o

- _> o




Outline — An Optimal Control Approach to ...

« a model for growth and invasion in glioblastoma

 amodel for chemotherapy for heterogeneous tumors

« a model for antiangiogenic therapy

(alone and in combination with chemotherapy)

 a model for chemotherapy and immune boost

- future directions metronomic chemotherapy



Optimal Drug Treatment Protocols

Main Questions

HOW MUCH? (dosage)

HOW OFTEN? (timing)

IN WHAT ORDER? (sequencing)



A Model for Growth and
Invasion in Glioblastoma




* normal glucose levels up-regulate the microRNA miR-451
level leading to cell proliferation and decreased cell

migration

Glioblastoma

« a particularly aggressive form of
brain cancer characterized by
alternating phases of rapid growth
and tissue invasion with a mean
survival time of just about one
year

« freatment: surgery

 problem: distant tumor satellites

fol =3
‘s 22000c220
wm.ﬂ }4&00«-94; il

* low glucose levels induce a down-regulation of miR-451,
which, in turn, promotes cell motility and invasion,

but inhibits proliferation.



Dynamics of the miR-451 AMPK Complex

[Kim, Roh, Lawler and Friedman, PLoS One, (2011)

miR 451 - micro RNA's regulate the expression levels G
of genes 1
AMPK — adenosine monophosphate-activated protein
kinase
: -— M
an enzyme that plays a role in cellular
energy homeostasis including glucose uptake
5] o
M — concentration of miR-451 — [ A }

A — concentration of AMPK complex
G — glucose level T

S — source of AMPK complex S



Dynamics of the miR-451 AMPK Complex
[Kim and Roh, Discr. and Cont. Dyn. Syst., (2013)

14+ aA? non-dimensionalized,
: K3 minimally parameterized
cA = S+ 11 ﬁM2 — A, version of the model

e <1 A degrades much faster than M (half-life of mIR 451 is in
the range of 100-200 hours, for AMPK about 6 hours)

a — inhibition of miR-451 by AMPK (Hill-type, scaled)
f - inhibition of AMPK by miR-451 (Hill-type, scaled)
K, - autocatalytic strength of miR-451 (scaled)

K4 - autocatalytic strength of AMPK (scaled)

¢ - scaling factor related to the degradation rates of miR-451 and AMPK,



G constant Differential-Algebraic Model

\
2
Y
/
multi-stability for
iIntermediate
glucose level
(b) G=0.5
(c) G=1.0
5
miR-451 (M)
4
S s high glucose
“miR-451 (M) 5 level
<§( 2
blue curve = slow manifold 1 /
red curve = equilibrium manifold o——— —

3
miR-451 (M)



for a constant glucose level, G=const, the HySte resiISs
following hysteresis picture for the equilibria
and their stability arises

4 ' | | | ' )
growth
= -
vl proliferation (over-expression)
z 25 suannahasasanannnapannasn - A EEEEEEEELLk e LLLEELLLELLEEEEr : ............... r v
= |
: 1 invasion
i ] T i | (under-expression)

°. o6 ‘.
* glucose level, G

=

]

cycle for differential
algebraic model

L

miR451 (M)
N [#3]
—
/
w

0

I }
02 0.4 06 08 1
Glucose level (G)




* maintain the miR-451 level M above a threshold M., so that
glioma cells remain in the proliferation phase and do not
switch into their invasive migratory phase

» effective control: the level of glucose

G=-2AG+u, G0 =Gy

1

we allow for both bolus injections or continuous infusions and
do not limit the control variable in its size

* use as little glucose as possible in order to limit the cancer growth

———>>  minimize the overall amount of glucose given



Optimal Control Problem

[M] for a fixed terminal time T, minimize the objective

J =Y, G+ [y ult)at

over all times t; € [0, 7], bolus dosages G , £ € N and all
Lebesgue measurable functions v : [0, T — [0, c0)

subject to the dynamics

. K1
M = — M
G+1+ozA2 ’
. B K3 -
cA = S+1+5M2 A,
G = -)\Gtu

and state-space constraint | \/(¢) > M, |forall & 0, 7]




State-Space Constraint

* the state-space constraint M(t) > My, is of order 2:

. [-ﬁ:l
M G — M =

_|_1+05A2 0, \
M = -AG+u+---+=0

 this makes transitions with the constraint difficult

(possibly chattering, ... )

 consider a modified problem with an order 1 state-space constraint

\




Optimal Control Problem ||

[G] for a fixed terminal time T, minimize the objective

J=5F G+ [ ut)dt

over all times ¢; € [0, 7], bolus dosages G; , £ € N and all
Lebesgue measurable functions ¢ - [O,T] N [0, oo)

subject to the dynamics

. K1
M = —
L 1+ A2 M,
A K3 -
ceA = S+ EWCIVE A,
G = —-)\G+u

and state-space constraint| ((¢) > (3, = G(M,,) | forall ¢ € [0,T]




Solution for [G]

« for problem [M] to be well-posed, we assume that
My = M(0) > M,

» according to the fast dynamics for A we also assume that

Ag = A(0) = § + ke

Theorem [SchKimLed, 52", CDC 2013]

For these initial conditions the solution to the
optimal control problem [G] is given by
administering an initial bolus dose G, of glucose
that brings the system to the threshold level G,
at time 0 (if it lies below) followed by constant j
infusion at rate u. = AG,. This control maintains o Mo,
the level of M above its lower threshold M. T

miR-451, M

time,t *©

——>  continuous administration does better than spaced boli
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Heterogeneous Tumor
Cell Populations




Mathematical Model

[Hahnfeldt, Folkman and Hlatky, JTB, 2003]

for simplicity, just consider two populations of different chemotherapeutic

sensitivity and call them ‘sensitive’ and ‘resistant’

S = (Oél — Y1 — (,010)5 + ’YQR

R = mS+ (a2 — 72— )R o
c = —/60 + U ¥1
S —
» ; N=(S,R)
S —sensitive cell population .
U

R — resistant cell population — 4 c %] Yo
a, — growth rate of sensitive population v
a, — growth rate of resistant population R
y, — transfer rate from sensitive to resistant population P2
Y, — transfer rate from resistant to sensitive population X9

@, — linear log-kill parameter for sensitive population
@, — linear log-kill parameter for resistant population

B — pharmacokinetic parameter related to half-life of chemotherapeutic agent



Mathematical Model: Objective

the number of cancer cells N = (S,R)
left without causing too much harm to the healthy cells

T T
J(u) = rN(T) + /O qN(t)dtJr/O Cu(t)dt

7o 1

Weighted average

of humber of Weighted average

cancer cells at of cancer cells

end of therapy during therapy (side effects on
healthy cells)

Toxicity of the
drug



As Optimal Control Problem

(LSch, JBS, 2013, submitted)

For a fixed therapy horizon [OaT] minimize
T
J=nS(@)+1R@) + [ auSE) +eR(E) + ultd
0
over all functions u : [0, T| — |0, umax| Subject to the dynamics

¢ = (A+4cB)z, 2(0) = 2o
¢ = —fc+u, c(0) =0

where

() e
Y1 g — Y2 0 —@2



Candidates for Optimal Protocols

= switching function @(t) — 1

* bang-bang controls

max

d(t)>0 d(t) > 0

d(t)>0 T

> singular

M) =0

treatment protocols of
maximum dose therapy
periods with rest periods

in between
MTD

continuous infusions of
varying lower doses

80D




Singular Controls

U 1S singular on an open interval /
{—> switching function ®(¢) =0 on [
all time derivatives must vanish as well
“allows” to compute the singular control

order k& : the control appears for the first time in
the 24" derivative

Legendre-Clebsch condition (minimize)

0
(—1)’fa—uq><%> (t) >0



Bang-bang vs. Singular Solutions

* in the region BB,
BB = {(S,R) : [(p1 — ©2)B72 — q2p1902S(t) | R(t) < 91%57?5@)2}

the Legendre-Clebsch condition is violated and optimal controls are bang-
bang; in particular, this holds if

g > 6@1 — P2 72
P1P2 (g2

soutside the region BB,
the Legendre-Clebsch condition is satisfied, but singular controls are of

order 2 and concatenations with bang controls are through chattering arcs

singular controls become a viable option as the sensitive cells
> | get depleted through chemotherapy and the resistant population
becomes dominant
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ur(t) = <
| U forT<t<T.
T=1] ¢ “
: r\
“ time

l—\

-]
—
-

populations R and S

N

e Numerical Simulations

concentration ¢

8 10

12

14

" time

20

1‘6 - 1‘8 2‘0
time

21



G el \Numerical Simulations

| U forT<t<T.

u-(t) = 4

7T =1.75 >
° i o
[ — C
b o
3 = 1.75
s £
[&)
C1
4 <}
[ap— 8
4 PP tlmé 20 [ 2 4 ] 8 10 12 14 1etim1é 20
10912"109
mﬂ |
-~
= |
(o s1.75
(7p]
S - :
=
a2 1
f=)
[ 1
gl R, 75 i
o) 2 a4 (53 8 10 12 14 20

© time



u-(t) = 4

| Using

T=1.75

for T <t <T.

—t
-
Ne)
b

populations R and S

4
0

1]

1]

G el \Numerical Simulations

21

| —
-
~J

populations R and S

populations R and S

*time

| —
-
-~J

populations R and S
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umax

| Using

T =2

dose rate u

for 0 <t <,

for T <t <T.

Numerical Simulations
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Tumor Microenvironment — Other Treatments

S \\ A ) )’ )
Chemo-sensitive ‘\:: Fibroblast .’ Tumor stimulating
tumor cell myeloid cell
| Chemo-resistant J Endothelia . Surveillance T-cell
tumor cell



Tumor Antiangiogenesis

VEGF Blood Vessel
Producton Growv: th

-
e -~
Tumor ;
-

VEGF o

~avascular
" A——

growth angiogenesis

\A 9. ®

metastasis = _i* _

http://www.gene.com/gene/research/focusareas/oncology/angiogenesis.html



http://www.gene.com/gene/research/focusareas/oncology/angiogenesis.html

Tumor Anti-Angiogenesis

Judah Folkman, 1972 «  suppress tumor growth by
preventing the recruitment of new

]:)I_‘0 [’:()lkman’s blood vessels that supply the

tumor with nutrients

\ N 7AR indirect approach

« done by inhibiting the growth of
the endothelial cells that form the
lining of the new blood vessels
therapy “resistant to resistance”

« anti-angiogenic agents are
biological drugs (enzyme inhibitors
like endostatin) — very expensive

Angiogenesis and the Struggle to Defeat Cancer

ROBERT COOKE and with side effects

Foreword by Dr. C. Everett Koop




Model [Hahnfeldt,Panigrahy,Folkman,

Hlatky],Cancer Research, 1999

D p — tumor volume
— —f D In a ? q — carrying capacity
u — anti-angiogenic

- dose rate

= bp— (p+dp?)g — yuq,

p,g — volumes in mm3

- tumor growth parameter £ =0.084
Lewis lung
- endogenous stimulation (birth) b—=5.85 carcinoma
implanted

§

b

d - endogenous inhibition (death) d = 0.00873 inmice
Y - anti-angiogenic inhibition parameter  — 0.15

v

- natural death (M — O)



Optimal Control Problem

For a free terminal time /°  rinimize p(T)

over all functions « : [0, 7] — [0, umax] that satisfy

T
/ u(t)dt < A
0
subject to the dynamics
: p
P = _gp In (5) 9 p(O) — PO,

qg = bp— (u + dp%) q — yug, q(0) = qo,



Singular Control

_ Ll ? p D

feedback control

-20
(0]



Admissible Singular Arc

18000 T L T T T L -

16000

]
£

=

&

"

]
~J
ot

1

14000

I
1

12000

I
1

]
1

10000

tumor volume,p
SN

8000

6000

]

\\
=3
N

|73
N—
|
|_l
|
=
_|_
=
WIN
()

4000

]
1

]
1

2000

ot _ L . L r r r r L
0 0.5 1 1.5 2 2.5 3 3.5
carrying capacity of the vasculature, g q 4




Synthesis of Optimal Controls

[LSch, SICON, 2007]

18000 r T T T T T T T T =

= _ U=a

— !
16000 |- U= O - o -
— o B ” —
P -
_
14000 — = -
12000 - fé B +* * 7

» 10000 f -
g _ _ begin of |
end of an optimal trajectory J

therapy

6000

4000

2000~ final point — minimum of p 7
0 C r r r r r r r r n
(0] 2000 4000 6000 8000 10000 12000 14000 16000 q 18000

endothelial cells

typical synthesis: U, .,—S—0



Some Practical Aspects




An Optimal Controlled Trajectory

for [Hahnfeldt et al.]

Initial condition: p, = 12,000 g, = 15,000, U.,=75
L L u 4571
" "N maximum dose rate
60 4550
col. | 4541
% 40 \ ] 45:2— f
% . 45,1 v v v y . y . - - qo
o 30 IOWer d OSe rate - SI n g u Iar B 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
ol averaged optimal dose
10f no dose 1 1 (T A
or [ [ [ [ [ [ T\ - a — — uopt (t)dt — —
0 1 2 3 4 5 6 7 T 0 T

robust with respect to q,




Minimum Tumor Volumes under Suboptimal

Constant Dose Protocols [LSch, JTB, 2008]

8700

8. 700 ; | | | | | | | | '
8650 [~ pO — 12, OOO _|

ool half dose
full dose /
8550
8500 - 7
. Jo
8450/- averaged optimal dose
8,400 T optimal control 12, 000
84020000 3OIOO 40IOO 50IOO 60IOO 70IOO 80IOO 90IOO 10CI>00 11 (I)OO 12000

Values of the minimum tumor volume for a fixed initial tumor Po
volume as functions of the initial endothelial support 40
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Optimal Daily Dosages

Give all inhibitors in 6 daily doses and then follow the
trajectory for u = 0 until the minimal value is realized on
the diagonal

u; = 46.61, uy = 45.31, uz = 48.15,
Uyg = 5071, Uy = 5320, Ug — 5602,

Dy = 8544.40

4|
0.95 |
—a
I'=6.169
.
1 1 1 ] I T 1 1 1
H 06 0.8 1 1.2 T4




Combination Therapy: Antiangiogenic
Treatment with Chemotherapy




A Model for a Combination Therapy

[d'OLMSch, Mathematical Biosciences, 2009]

Minimize p(T) subject to with d’Onofrio and H. Maurer

. p
p = —Epln (E) —ppv, p(0) = po,

. 2
¢ = bp—(u+dp3)g—yqu—nqv, ¢(0)= qo,

angiogenic inhibitors

T
0< < Uy, / w(8)dt < Yoo
0

cytotoxic agent or other killing term

Sk
O § U S 1 /TI'Il ax \/O U (YL) (ZYL § < max




Optimal Protocols: what comes first?

e initially give no chemotherapy, v = 0, and follow the
optimal angiogenic monotherapy: full dose — singular

e at a specific time 7 along the singular arc initiate chemother-

apy,
U = Unmax, and give all drugs in one session

13000

12000 —

tumor volume, p

11000 -

10000 -

9000 [~

8000 [~

7000 [~

optimal
angiogenic
monotherapy

I r I r
8000 10000 12000 14000
carrying capacity of the vasculature, g

>

1-dimensional
minimization problem
over the parameter 7



Controls and Trajectory [for dynamics from Hahnfeldt et al.]

«—u - angiogenic inhibitors

dosage angio

50— —
aof- / | 13000
30+ ~

/ corresponding

/

tumor volume, p

" ime (inédays) - 10000 / tr aj ect ory
- = 4.61

8000 -

p. = 6990.1

7000 - I—

dosage chemo

[ [ [ [ [ [
4000 6000 8000 10000 12000 14000 16000
carrying capacity of the vasculature, q

«— © - chemotherapy

6
time (in days)



Medical Aspect

Rakesh Jain,
Steele Lab, Harvard Medical School,

==> ‘there exists a therapeufic window
when changes in the tumor In response to
anti-angiogenic treatment may allow

chemotherapy to be particularly effective”

Connection between mathematical results
and experimental data ??




Tumor Immune Interactions




A Model for Tumor-Immune Interactions

- Stepanova, Biophysics, 1980

Kuznetsov, Makalkin, Taylor and Perelson,
Bull. Math. Biology, 1994

de Vladar and Gonzalez, J. Theo. Biology, 2004,

d’Onofrio, Physica D, 2005

> renewed interest in the topic also in connection with
Immune-dynamics and immuno-therapy



Stepanova-Type Mathematical Models

for Tumor-Immune Dynamics

« STATE:
.cr;(t) - primary tumor volume
y(t) - Immunocompetent cell-density

(related to various types of T-cells)



Dynamical Model

r = L’JCSEF(ZC)_,nya [Stepanova]
T ;1,1(;1:—@332)?;—59"‘@:

U -tumor growth parameter F - growth function
“Y -rate at which cancer cells are eliminated through the activity of T-cells
(X - constant rate of influx of T-cells generated by primary organs

(5 - natural death of T-cells

T, 5 - calibrate the interactions between immune system and tumor

B - threshold beyond which immune reaction becomes suppressed

by the tumor



Growth Models on the Tumor Volume x

F is positive, twice
continuously differentiable

Stepanova, 1980

— HCL, exponentlal grOWth Kuznetsov et al., 1994
T de Vladar and
—HUCT In : Gompertzian Gonzalez, 2004
®.@,

0>1 logistic growth

0
o =1
= Hcd 1 — y - d’Onofrio, 2005
0 <1 L Sch Olumoye, 2013




Phaseportrait for Gompertzian Model

multiple stable equilibrium points

g
3y

N

immunocompetent density, y

phase portrait, u=0

400
cancer volume, X

600

800

asymptotically stable
* focus — “good”,
benign equilibrium

asymptotically stable
* node - "bad’,
malignant equilibrium

1y = 0.00484 pe = 0.5618
a=0.1181 3 =0.00264
v=1 0 = 0.3745
Too = (80
[Kuznetsov et al., 1994
de Vladar et al., 2004]



Phaseportrait of uncontrolled dynamics

phase portrait, u=0 Saddle pOiIlt

(Z,y) = (356.174,0.439)

2.5

N

1.5}

stable
elgenvector

(2] = (o)

we want to move the state of the system into the region of
attraction of the benign equilibrium

immunocompetent density, y

0 200 400 600 800
cancer volume, X

—_— minimize ax(T) — by(T)



Optimal Control Problem (LSch, CDC 2012)

For a free terminal time T rninimize

J(u) = ax(T) — by(T) + /0 (cu(t) + dv(t))dt + sT

over all measurable functions U : [O,T] — [0, 1] and
v:[0,7] — [0,1] subjecttothe dynamics

Chemotherapy — log-kill hypothesis

'
T = pcxF(x)—vyry—rxzu, z(0) = xo,
y = wpr(z—pB2%)y—ody+atuyyy,  y(0)= yo,

T

Immune boost




Immunotherapy only

= —pczln (%) — YTy,

o0

Phase Portrait

100 200 300 400 500 600 700 800 900 1000

ZE(O) = T,

pr (z — Bz?) y — dy + atryyy,  y(0) = yo,

malignant region persists

\

Immunotherapy alone
IS not successful in
this region

\

Chemotherapy is needed



Dynamics revisited

Write the system as

2= f(2) +ugi1(2) +vgo(z)  with 2= (z,y)!

drift vector field control vector fields
—KXT
—MCQT'n(%)—’YZCy 91(2)—( ; ),
f(z) = , :
MI($_5332)3J_5U+04 92(2):( )
KyY

Lie bracket [f,9](z) = Dg(2)f(2) — Df(2)g(2)

g, and g, commute: g1, 92](2) =0



Legendre-Clebsch Condition

(N(t), [g1, [f, 91]1(2z«(2))) < O for u (Chemotherapy)

l91, [f; 9111(2) = 01(2)91(2) + 02(2)[f, 911(2)

—p (A(0), [91, [, 91]1(24(2))) = —c01(24(2))

The Legendre-Clebsch condition is satisfied if and only if

01 (Z*(t)) >0 singular controls are locally optimal
0, (2) 1 —4px l l
Z) — K |
1 HCT 5 e ﬁl 1|
43 23




Legendre-Clebsch Condition for Control v

(Immunotherapy)

Suppose the control v is singular on an interval | . For optimality
we need that

(A(2), g2, [f, 92]1(2x(2))) < O

But in this case

2Ry

> 0

——— smgular controls are maximizing, SO not
optimal

— the control v, I.e., immune boost, should
be bang-bang



Chemotherapy with Immune Boost [DCDSB, 2013]

« “cost” of immune boost is high and effects are low compared to chemo

« trajectory follows the optimal chemo monotherapy and provides final boosts
to the immune system and chemo at the end

L L L L L L L 3_
1~ 1s01 010 —
2.5~
0.8- “free pass”
- chemo 27
06 - immune boost
15-
0.4
1ﬁ
0.2
0.5
ol
: 0 f\h
0 2 4 6 8 10 12 0 200 400 600 800



Metronomics and Other
Alternatives to MTD

with Eddy Pasquier, CCIA, University of New South Wales



2™ Annual Workshop on Cancer Systems Biology

Tumor Metronomics:
Timing and Dose Level Dynamics

July 17-20, 2012

Tufts University
Medford Campus
Boston, Massachusetis, USA

wwW.oanoer-systems-biology.org/workshop.html

Instructors

Philip Hahnfeldt, PhD - Tufts University School of Medicine, USA (Co-charr)
Giannoula Kiement, MD - Tufts University School of Medicine, USA (Co-charr)
Nicolas André, MD, PhD - Hépital pour Enfants de Ia Timone, FR
Sébastien Benzekry, PhD - Tufts University School of Medicine, USA
Barton Kamen, MD, PhD - UMDNJ, Robert Wood Johnson Medical School, USA
Urszula Ledzewicz, PhD - Southem lllinos University, USA

Carl Panetta, PhD - St. Jude Children's Research Hospial, USA

Eddy Pasquier, PhD - CCIA, University of New Scuth Wales, AUS

Heinz Schaettler, PhD - Washington University in St. Louis, USA

David Waxman, PhD - Boston University School of Medicine, USA

Guest Speaker
Larry Norton, MD - Memorial Sioan-Kettering Cancer Center, USA

Sponsored by

Cenfer of Cancer Sysfems Biology, Steward St. Elizabeth’s Medical Centfer
Tufts Universily School of Medicine




Metronomic Chemotherapy

The frequent administration of chemotherapy drugs
at relatively low, non—toxic doses, without prolonged
drug—free breaks (Hanahan et al., JC72000)

METRONOMICS

Metronomic Chemotherapy + Drug Repositioning




Metronomics

Immune umour
system vasculature

—

Tumour dormancy / Elimination

Cancer
cells

Adapted from Pasquier et al., Nature Reviews Clinical Oncology,
2010



Metronomic Chemotherapy: modeling challenge

2rd Annual Workshop on Cancer Systems Biology

Timing and Dose Level Dynamics

» treatment at lower doses
( between 10% and 80% of the MTD)

e constant or not?

Advantages (to be modelled):

1. lower, but continuous cytotoxic effects on tumor cells
lower toxicity (in many cases, none)
lower drug resistance and even resensitization effect
2. antiangiogenic effects

3. boostto the immune system



How to optimize the anti-tumor, anti-angiogenic and pro-immune
effects of chemotherapy by modulating dose and administration

schedule?

Different therapeutic approaches:

- “Pure” metronomic / Metronomics

www.impactjournals.com/oncotarget/ Oncotarget, December, Vol.2, No 12

Pilot study of a pediatric metronomic 4-drug regimen

-Weekly VLB _ ] _ _ _ _ N

. Nicolas André'?, Sylvie Abed!, Daniel Orbach3, Corinne Armari Alla* Laetitia
-Dal|y CPA Padovani®, Eddy Pasquierz¢, Jean Claude Gentet!, Arnauld Verschuur!2

! service d’'Hématologie et Oncologie Pédiatrique, Hdpital pour Enfants de La Timone, Marseille, France

_2X Wee kly MTX 2 Metronomics Global Health Initiative, Marseille, France

o Service d'Oncologie Pédiatrique, Institut Curie, Paris, France
-Daily CLX feroree GO ot ke Ped

Service d'Oncologie Pédiatrique, Grenoble, France

® Service de Radiothérapie, Hopital de La Timone, Marseille, France
5 Children’s Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW,
Australia

Phase I/1I Trial of Metronomic Chemotherapy With Daily

Dalteparin and Cyclophosphamide, Twice-Weekly

Methotrexate, and Daily Prednisone As Therapy for J Clin Oncol 2010
Metastatic Breast Cancer Using Vascular Endothelial

Growth Factor and Soluble Vascular Endothelial Growth

Factor Receptor Levels As Markers of Response

Man Soon h'n:lnlg. Robert A. Backeum, Mark Clamons, Sharbmdra Verma, Susan Deme, Maureen E Trodieau,
Kathir Rocke, fohn Eber, Robers Kerbel, Gernie E. DeBoer, Donald | A. Surherkmd, Urbamn Emmeegger,
fopoe Stimperiand, Sandra Gandmer, amd Katfilsen . Primhard



How to optimize the anti-tumour, anti-angiogenic and pro-immune

effects of chemotherapy by modulating dose and administration
schedule?

Different therapeutic approaches:
- “Pure” metronomic / Metronomics

- MTD / Metronomic sequencing

(Bang-Bang-Metro, Metro-Bang-Bang...)

A Multitargeted, Metronomic, and Maximum-Tolerated
Dose “Chemo-Switch” Regimen is Antiangiogenic,
Producing Objective Responses and Survival Benefit

in a Mouse Model of Cancer |

Kristian Pietras and Douglas Hanahan J Clin Oncol 2005

3 @ Activity of a multitargeted chemo-switch regimen (sorafenib,
gemcitabine, and metronomic capecitabine) in metastatic
renal-cell carcinoma: a phase 2 study (SOGUG-02-06)

Joagquim Bellmunt, José Manuel Trigo, Emiliano Calvo, Joan Carles, José L Pérez-Gracin, Jordi Rubid, Juan Antonio Virizuela, Rafod Lipez,
Martin Ldzaro, Joon Albanell

Lancet Oncol 2010



How to optimize the anti-tumour, anti-angiogenic and pro-immune
effects of chemotherapy by modulating dose and administration
schedule?

Different therapeutic approaches:
- “Pure” metronomic / Metronomics

- MTD / Metronomic sequencing  (Bang-Bang-
Metro, Metro-Bang-Bang...)

- Adaptive therapy

Mathematical Oncology
Adaptive Therapy

Cancer Research 2009

Robert A. Gatenby, Ariosto S. Silva,' Robert J. Gillies,” and B. Roy Frieden’

‘Department of Integrative Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida and *School of Optical Sciences, University of
Arizona, Tucson, Arizona



A change of strategy in the war on cancer

Patients and politicians anxiously await and increasingly demand a ‘cure’ for cancer. But trying to control the
disease may prove a better plan than striving to cure it, says Robert A. Gatenby.

For cancer, seek
and destroy or
live and let live? Nature 2009



How to optimize the anti-tumour, anti-angiogenic and pro-immune
effects of chemotherapy by modulating dose and administration

schedule?
Different therapeutic approaches:

- “Pure” metronomic / Metronomics

- MTD / Metronomic sequencing (Bang-Bang-Metro,
Metro-Bang-Bang...)

- Adaptive therapy
- Chaos therapy




Metronomics Global Health Initiative (MGHI)

http://metronomics.newethicalbusiness.org/

Nicolas Andre Giannoula Klement Eddy Pasquier
Children’s Hospital of Tufts University School of Children Cancer Institute
Timone, France Medicine, Boston, USA

Australia Sydney, Australia


http://metronomics.newethicalbusiness.org/
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